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1 Introduction

In today’s digital era, ensuring robust and reliable authentication methods is
essential, yet traditional handwritten signatures continue to be widely used de-
spite inherent vulnerabilities [I]. Consider a common scenario in schools: stu-
dents are often required to submit parental signatures on permission slips for
school trips. Given the ease with which these static signatures can be forged,
it is not uncommon for students to replicate their parents’ signatures, thereby
compromising the intended security and trust in the system.

Digital signature biometrics address these challenges by capturing dynamic
features such as pen pressure, stroke order, and speed—that are far more diffi-
cult to replicate [I]. This dynamic approach not only provides a stronger defense
against forgery but also offers practical advantages in various real-world appli-
cations [2]. For example, banks can integrate digital signature biometrics into
their transaction authentication processes, adding an extra layer of security that
helps prevent fraudulent activities. Similarly, as more services migrate online,
secure digital authentication methods become increasingly critical to protecting
sensitive data and ensuring that only legitimate users gain access [T}, 3].

In addition to enhanced security and user convenience, digital signature
biometrics offer the unique advantage of being cancellable [4]. Unlike static
biometric identifiers such as fingerprints or iris scans, which are permanent
and immutable, digital signature biometrics can be revoked and replaced if
compromised. This cancellability ensures that, in the event of a security breach,
users can update their biometric profiles, thereby maintaining the integrity of
the authentication system over time [5].

Despite its promise, several research questions remain open. In particular,
it is unclear how consistent digital signature patterns remain when captured
across different devices. Variations in hardware, such as digital tablets with
varying sensitivity or sampling rates, could affect the reliability of the captured
dynamics [6].

This paper aims to investigate the feasibility and reliability of biometric au-
thentication via dynamic signature verification. By focusing on a systematic
approach to data collection, feature extraction, machine learning model selec-
tion, and evaluation metrics, this work attempts to address ongoing gaps in
cross-device adaptability and skilled forgery resistance. Ultimately, these find-
ings could lay the groundwork for safer and more user-friendly authentication
practices, applicable to diverse domains from finance to education.



2 Literature Review

A broad consensus in the research community acknowledges that biometric au-
thentication enhances security by leveraging physiological or behavioral features
that are difficult to replicate, thereby providing stronger safeguards compared to
passwords or PINs [I]. This shift toward biometrics is driven by widespread vul-
nerabilities in conventional authentication systems, including social engineering
and credential theft.

This section provides a review of the foundational and contemporary work in
dynamic signature authentication, drawing on studies of fundamental biometric
concepts, forgery detection, dynamic feature extraction, system robustness on
mobile devices, and machine learning—based classification.

2.1 Signature as a Biometric Identifier

From a legal and practical standpoint, the signature has historically served
as a cornerstone for document authentication and commercial transactions [4].
Traditional signature verification often hinges on comparing the static shape of
a signature, leaving it vulnerable to skilled forgers who can carefully replicate
shapes [2].

The reliability of digital signatures depends on their dynamic characteris-
tics, such as stroke speed, pressure, and pen angle. Studies have demonstrated
that integrating these dynamic traits into authentication systems significantly
improves their ability to differentiate genuine users from impostors [3].However,
these authors also emphasize that signatures are inherently behavioral, mean-
ing they rely heavily on a person’s neuromuscular coordination and can exhibit
fluctuations under stress, fatigue, or other influences.

2.2 Forgery Challenges and Cancellable Biometrics

Forgery remains a critical challenge in traditional signature verification. Pal et
al. categorizes forgeries into three types: random, simple, and skilled, where
each level requires a correspondingly robust detection strategy [4]. Skilled forg-
eries, in which an impostor has access to a sample signature, pose the greatest
risk. Even with dynamic features, well-trained forgers can imitate various as-
pects of signing behavior.

For this reason, a major area of research focuses on optimizing the trade-off
between strict detection thresholds and practical usability. Systems that are
overly sensitive may incorrectly reject legitimate users, whereas lenient systems
run the risk of false acceptances.

Since signature biometrics can be cancellable, they hold an advantage over
certain physiological biometrics in contexts where compromised credentials must
be swiftly “reset”[4]. This adaptability is especially relevant in large-scale au-
thentication scenarios where user credentials can be compromised by phishing
attacks or data breaches.



2.3 Behavioral Biometrics and Fraud Detection

Behavioral biometrics, including signature verification, offer a novel approach
to detecting fraudulent activity [5]. MasterCard demonstrates how behavior-
based profiling, combining insights on typing speed, touchscreen interactions,
and device-specific cues can help flag anomalies in real-time [B]. These insights
can be integrated into fraud detection mechanisms, alerting users or blocking
transactions when behavioral deviations are detected [5].

Emerging trends indicate that behavioral biometrics combined with artificial
intelligence (AI) can improve fraud detection rates. However, these Al-driven
approaches raise concerns regarding privacy and security, as continuous moni-
toring of user behavior can lead to ethical dilemmas in biometric surveillance.

2.4 Machine Learning in Signature Authentication

Machine learning has proven effective in digital signature verification. Leghari
et al. compare classifiers like Support Vector Machines (SVM), Random Forest
(RF), and Convolutional Neural Networks (CNNs), showing that deep learning
models outperform traditional methods [7].

These studies demonstrate the feasibility of real-time authentication, with
CNN models achieving high accuracy in distinguishing genuine and forged sig-
natures [3]. However, these advanced methods are computationally intensive
and may require specialized hardware for real-time use.

Despite the growth of machine learning solutions, cross-device consistency
remains a challenge. Martinez-Diaz et al. note that signatures collected on
mobile devices often suffer from degraded performance due to smaller input
areas, inconsistent screen sensitivity, and varying ergonomics [6]. Nevertheless,
mobile-based verification is promising for mass adoption, driving the need for
algorithms that can normalize data across different devices.

2.5 Gaps and Trends in Research

Collectively, the existing literature paints a picture of a rapidly advancing field
with several open questions:

1. Cross-Device Consistency: While dynamic signatures are robust, the
ability to maintain accuracy across devices is insufficiently explored [6].

2. Privacy Concerns: Continuous user behavior monitoring raises ethical
issues about privacy and consent, requiring transparent data policies [5].

3. Forgery Resistance: Deep learning methods enhance authentication
but still lack robust models to counter highly skilled forgeries without
compromising usability [4].

Across these studies, feature engineering emerges as a critical success factor.
Whether using conventional statistical descriptors or deep learning—extracted
features, capturing the temporal and spatial dynamics of handwriting remains
the linchpin of accurate signature verification.
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3 Model Building and Evaluation
3.1 Methodology

A machine learning model will be developed using Python and TensorFlow. The
proposed methodology involves:

1. Data Collection: Signature samples will be obtained from digital tablets
and mobile devices to analyze intra-user variations and cross-device consis-
tency. Each participant will be required to sign multiple times to account
for natural variations in handwriting.

2. Preprocessing: Raw signature data will be cleaned, normalized, and
augmented to improve model generalization.

3. Feature Extraction: Dynamic features such as stroke velocity, acceler-
ation, pressure, and stroke order will be extracted from the signatures.

4. Model Training: Various machine learning algorithms will be tested,
including CNNs, SVM, and Random Forest.

5. Evaluation: Models will be assessed using key performance metrics such
as accuracy, Equal Error Rate (EER), False Acceptance Rate (FAR), and
False Rejection Rate (FRR).

3.2 Initial Code Implementation

mmnn

Proposed Python code for training signature verification model
— wusing CNN based on lierature.
Features:
- stroke_coords: NzTz2 (N samples, T time steps, z-y coords)
- pressure: NzT
- speed: NzT
Optional:
- signature_timages: NeH © W ( will soon decide tf using tmages)
Labels: Nzl, where each entry is 0 (forged) or 1 (genuine)

nmmnn

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

from sklearn.model_selection import train_test_split

# 1. Loading dataset (assuming they will be npy)
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# stroke_coords.shape = (num_samples, time_steps, 2)
# pressure.shape = (num_samples, time_steps)

# speed.shape = (num_samples, time_steps)

# labels.shape = (num_samples,)

#

data = np.load("full_dataset.npy", allow_pickle=True).item()
stroke_coords = data["stroke_coords"]

pressure = data["pressure"]
speed = data["speed"]
labels = data["labels"]

# If using image data as discussed :
# signature_images = data["signature_images"]

# 2. Combining features for 1D CNN input

# Use z, y, pressure, and speed as separate channels.
# This yields a shape of (N, T, 4) -> T time steps, 4 channels.

num_samples = stroke_coords.shape[0]
time_steps stroke_coords.shape[l] # T

# Expand pressure and speed to match dimensionality: (N, T, 1)
pressure_expanded = pressurel[..., np.newaxis]
speed_expanded = speed[..., np.newaxis]

# Concatenate along the channels azis = 2
# stroke_coords has shape (N, T, 2)
# combined_features => (N, T, 4)
combined_features = np.concatenate(
[stroke_coords, pressure_expanded, speed_expanded], axis=2

# Split into training and test sets
X_train, X_test, y_train, y_test = train_test_split(
combined_features, labels, test_size=0.2, random_state=42

)

# 3. Define a 1D CNN Model

# I wtll probably use ConvlD layers to process the time

— dimension, while each feature is treated as a separate

— channel.

model = Sequential ([
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# 1D convolutional layer with 32 filters, kernel size=3
1ayers.Conle(filters=32, kernel_size=3, activation='relu',
— input_shape=(time_steps, 4)),
layers.MaxPoolinglD(pool_size=2),

layers.ConviD(filters=64, kernel_size=3, activation='relu'),
layers.GlobalAveragePoolinglD(),

layers.Dropout (0.3),

layers.Dense (128, activation='relu'),

layers.Dropout (0.3),

layers.Dense(1l, activation='sigmoid')

D

# 4. Compile the model

model . compile (
optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy']

model . summary ()

# 5. Train the CNN

epochs = 10

model.fit(X_train, y_train, epochs=epochs,
- validation_data=(X_test, y_test))

# 6. Evaluate performance

loss, accuracy = model.evaluate(X_test, y_test)
print(f"Test Loss: {loss:.4f}")

print(f"Test Accuracy: {accuracy:.4f}")
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